Law Symbolic Representation Definition
Commutative Law ab=ba The order of applying the operation does not affect the result.
Associative Law (ab)c=a(bc) The grouping of operands does not affect the result.
Closure Law a,bS,abS (where S is the set) The result of applying the operation to two elements from a set is still an element of that set.

Supplementary angles: whose sum is 180(degree)

n=nn;1n=nn

Part 1

1: Number System -+

(1)31×(i)30×i=(1)×(1)15×i=i -

[(1+i)2]428=(1+(1)+2i)416=16(1)216

(a+bi)(c+di)=(acbd)+(ad+bc)i

2: Sets and Sub-Sets -+

\hline
& & \text{ AND } & \text{ OR } & \text{ NOT } & \text{ 2nd should not be false while first is true } & XOR \
\hline

P & Q & P \land Q \text{ (Conjunction)} & P \lor Q \text{ (Disjunction)} & \neg P \text{ (Negation)} & P \rightarrow Q \text{ (Implication)} & P \leftrightarrow Q \text{ (Biconditional)} \
\hline
\text{True} & \text{True} & \text{True} & \text{True} & \text{False} & \text{True} & \text{True} \
\text{True} & \text{False} & \text{False} & \text{True} & \text{False} & \text{False} & \text{False} \
\text{False} & \text{True} & \text{False} & \text{True} & \text{True} & \text{True} & \text{False} \
\text{False} & \text{False} & \text{False} & \text{False} & \text{True} & \text{True} & \text{True} \
\hline
\end{array}$$

Converse pq qp
Inverse pq ¬p¬q
Contra
positive
pq ¬q¬p
Name Notation Definition
Subset A ⊆ B all elements of A are in B
Superset B ⊃ A B has every element of A(basically A is subset of B)

3: Matrices -+

4: Quadratic Equations

Quadratic Formula:x=b±b24ac2a \begin{align} \\ \omega^3 = \omega^2 \times \omega \times 1= 1 \\ \\ \omega^2 + \omega + 1 = 0 \\ \\ \omega = \dfrac{-1 + i\sqrt{3}}{2} \\ \\ \omega^2 =\dfrac{-1 - i\sqrt{3}}{2} \\ \\ \omega = \dfrac{1}{\omega^2};\qquad \omega { #2} = \dfrac{1}{\omega} \end{align}

since α+β=b and αβ=c do the same for the other roots and put values

since $$ \begin{align}
\begin{vmatrix}
{{3}} & {{2}} \
{{1}} & {{2}}
\end{vmatrix} = & \ 6 -4= 4 \ 4 & \neq 0
\end

- ## 6: Sequences and Series+ -

\begin{array}{|c|c|c|c|c|}
\hline
\textbf{Type} & \textbf{General Term} & \textbf{Sum} & \textbf{Mean} & \textbf{Example} \
\hline
\text{A.P.} & a_n = a + (n-1)d & S_n = \dfrac{n}{2}[2a_{1} + (n-1)d] = \dfrac{n}{2}(a_{1} + a_n) & \text{A.M} = \dfrac{a + b}{2} & 2, 5, 8 \
\hline
\text{G.P.} & a_n = ar^{n-1} & S_n = \dfrac{a_{1}(1 - r^n)}{1 - r} , \text{for} , r < 1, , \text{or} , S_n = \dfrac{a_{1}(r^n - 1)}{r - 1} , \text{for} , r> 1 & \text{G.M} = \sqrt{ab} & 3, 6, 12 \
\hline
\text{H.P.} & a_n = \dfrac{1}{a + (n-1)d} & S_n = \dfrac{n}{\dfrac{1}{a_1} + \dfrac{1}{a_2} + \dots + \dfrac{1}{a_n}} & \text{H.M} = \dfrac{2ab}{a+B} & 1, \dfrac{1}{2}, \dfrac{1}{3} \
\hline
\end

- x/9 = 0.xxxxx... like if you divide x digit number by 9 with x 9s this repeats that number in decimal e.g. 34/99 = 0.343434... or 234/999= 0.234234.... * $A>G>H$ if a & b are +ve $A<G<H$ if a & b are -ve $G^2 = A \times H$ - to find d in AP from $a_{x}=m \text{ to } a_{y}=n$ $\dfrac{n-m}{y-x} =d$ - Sum of natural numbers starting from one to n is: $\dfrac{n(n+1)}{2}$ >[!question]- $\sum ^{100}_{n=2}:?$ simply do $\sum ^{100}_{n=1}=\dfrac{100(100+1)}{2}=50\times 101=5050$ now just -1 from it since the orignal series starts from 2 ANS: 5049 ### A.P - to find d from $a_{n} = x$ and $a_{m} = y$ - $d =\dfrac{(x-y)}{(n-m)}$ - e.g. $a_{2}​=5$ and $a_{6}=17$ - $d=\dfrac{17-5}{6-2}=\dfrac{12}{4}=3$ - find any $a_{n}$ if from any $a_{m}$ with $d$ - $a_{n}= a_{m}+d(n-m)$ e.g. $a_{20} =a_5 +d(20-5) = a_5 +15d$ > [!question]- if $a_{3}=4\text{ and } a_{5}=8$ find $a_{50}$ > a)100$\qquad$b)102$\qquad$**c)98**$\qquad$d) none - $a_{n} = a_{1}+(n-1)d$ $n=\dfrac{a_{n}+a_{1}}{d}+1$ > [!question]- which term is 148, in A.P -2, 4, 10... > **a)26th**$\qquad$b)25th$\qquad$**c)31th**$\qquad$d) 28th - $A_{m} = a+\dfrac{m(b-a)}{(n+1)}$ - m = AM to be found - n = Total number of AMs > [!question]- if there are 6 AM b/w 2 and 5 then $A_{5}$ is: > **a)$\dfrac{26}{7}$th**$\qquad$b)$\dfrac{6}{5}$th$\qquad$c)$\dfrac{29}{7}$th$\qquad$d) $\dfrac{31}{7}$th - $a_{n} =S_{n}-S_{n-1}$ for all A.P - $a_{5} =S_{5}-S_{4}$ > [!question]- If $S_{n} = 2n^{2} -n$ then $a_{8} =?$ a)120$\qquad$b)53$\qquad$***c)29***$\qquad$d)43 - Sum of interior angles of a polygon = $(n-2)\times 180^{o}$ > [!question]- Find the sum of interior angles of 16 sided polygon: > a)2880$\qquad$***b)2520***$\qquad$c)1800$\qquad$d)360 - if n is *odd* then Sum of n terms = n x middle term if n is *even* then Sum of n terms = $n\times \dfrac{(\text{middle term}+2)}{2}$. > [!question]- If $5^{th}$ term of an A.P. is 5, then sum of 9 terms of A.P. is: ***a) 45***$\qquad$b) 40$\qquad$c) 50$\qquad$d) 35 ### G.P - for an infinite G.P series$$S_{\infty}=\sum_{n=1}^{\infty} a^n = \dfrac{a}{1 - r} , |r| < 1

a2a1=r=0.1,Sn=0.110.1=0.10.9=19

7: Permutation and Combination +

Permutation: nPr=n!(nr)!=(n)×(n1)×(n2)(n(r1))e.g.7P3=7×6×57(31) simply write r digits starting from n 5 Combination: nCr=(nr)=n!r!(nr)!=(n)×(n1)×(n2)(n(r1))r!
nC0=nCn=1 nCr=nCr1 nCr.r!=nPr nC1=n
nPn=n! nCr=nCnr
7P52!×3!=7!(75)!2!×3!=7!(2!×3!)×(75)!

and

also try for corporation , note that r comes twice and o thrice

since divisible by 5, 5 is fixed at the end, no digits repeat so 5p2 = 5×4since only two places remain,

less than a lakh has 5 digits, each digit can be replaced by 3 possible numbers so 3×3×3×3×3=35
excluding 00000, so 243-1=242

0! 1! 2! 3! 4! 5! 6! 7!
1 1 2 6 24 120 720 5040

Combination:

Combination: nCr=(nr)=n!r!(nr)!

solution: =13C8+13C7 nCr+nCnr
and using above given rule, 8 is higher so we14C8 or 14C148 = 14C6

Geometrical problems

nC2= Number of line segments nC2n= Number of diagonalsnC3= Number of trianglesnC4= Number of quadrilateralsnC5= Number of Pentagonals

5C3

Pecrmutation Combinations
Arrangements
standing or sitting in row or in a circle
problem regarding digits
letters(A,B,C...)
Formation of words, number,etc
Selection, Choice, Draw,etc
Distributation, formation of a group, commitee, team,etc
problem regarding geometry

Probability:

P(AB)=P(A)+P(B)P(AB)

205=4;2036 and 15 which comes with both so P=420+620120

Total outcomes: 7C2=21,probability for NOT BLUE(not including its two balls): 72C221=1021

Die 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12
>[!question]- What is the probability of getting a sum 9 from two throws of a dice? >a)$\dfrac{1}{6}$$\qquad$b)$\dfrac{1}{8}$$\qquad$**c)**$\dfrac{1}{9}$$\qquad$d)$\dfrac{1}{12}$

Red card Prob: 2652, King Prob: 452, Red King Porb: 252; Total Prob: 2652+452252=2852=1426=713

P(AB) is the probability of an event where both A and B occur, P(AB) is the probability where in a given set either A or B may occur

Total outcomes: 64, same face: 6since they have only 6 faces which should be same , P(E)=664=163=1216

S={HH,HT,TH,TT}

simply multiply them 0.7×0.8×0.9

8: Mathematical Induction and Binomial Theorem

Mathematical Induction

since n is a natural number, using 2 and adding only first two numbers (1+2) = 3, now put n=2 in each option and whichever equal 3 is correct

since n3 includes more numbers than n>8 so we use it

Binomial Theorem

(a+x)n=nC0anx0+nC1an1x1+nC2an2x2++nCn1a1xn1+nCna0xn

where nC0, nC1, nC2 are binomial co-efficient

since there are alternating minus sign, A contain a minus, and 2nd term is 8x, which is n(nC1=n=4) times 2x

first make it binomial and it becomes [(1+x)2]4

since a7=128 , n=7 and number of terms is n+1=8

n is 5 so the degree of the correct option should be 5

a)198x2b)198x2c)198x2d)198x2

8th term so r=7, since all coefficient same in option, don't need to calculate 12C7 , since all even terms in are negatives when a negative is present in equation, its negative, now anr×br=2x127×1(2x)7

this time we calculate the combination, 12C7×(12x)127×2x7=729×132×128=3168

here n=12, and t=2 so r=1222=5, that means 6th term involves x2

9-14: Trigonometry

9: Fundamentals of Trigonometry

System units conversion definition
sexagesimal θMinuteSeconds M60=θ,S60=M
1 degree is the angle, the 360th part of a circle subtends on the centre
circular rad. 2π rad.=1 rev=360 the angle subtended by an arc equal in length to radius

(30×11)(10×112)=275
275 is in 4th quad so (360-275) = 85 so both

Polygon Area Perimeter arc
Circle A=πr2 L=2πr l=θr
Sector A=12r2θ=12rl l=θr
Triangle A=12ab
![sign of trigonometric functions.png center 300](/img/user/Notes/Entry%20Test/attachments/sign%20of%20trigonometric%20functions.png)
co-ratios Identity addition double angle triple angle half angle
Sin θ Cos 90θ sin2θ+cos2θ=1 sin(α+β)=sin(α)cos(β)+cos(α)sin(β)
sin(αβ)=sin(α)cos(β)cos(α)sin(β)
sin2θ=2cosθsinθ
=2tanθ1+tan2θ
sin(3θ)=3sin(θ)4sin3(θ) sin(θ2)=±1cos(θ)2
Cos θ Sin 90θ sec2θ=tan2θ+1 cos(α+β)=cos(α)cos(β)sin(α)sin(β)
cos(αβ)=cos(α)cos(β)+sin(α)sin(β)
cos2θ=2cos2θ1
=12sin2θ
=cos2θsin2θ
=1tan2θ1+tan2θ
cos(3θ)=4cos3(θ)3cos(θ) cos(θ2)=±1+cos(θ)2
Tan θ Cot 90θ cosec2θ=cot2θ+1 irrelevant tan2θ=2tanθ1tan2θ irrelevant tan(θ2)=±1cos(θ)1+cos(θ)
Sec θ Cosec 90θ

cos(45+30)=cos(30)×(cos45)sin(30)×sin(45)=(32×12)(12×12)=(32×22)(12×22)

=cot81cot72tan72tan81

simplify put t=90 and compare answers with each option

=4cos15cos152sin1522sinθcosθ=sin2θ
=2cos15sin15=sin30=0.5

2(3sin104sin310)

sinθ=12×1sinθ;sinθ=12

since 71+19= 90, so tan 71 = Cot(90 - 71) = Cot 19
and tan 45 and cot 45 both equal to one

Cosθ=BaseHypotenuseSinθ=PrependicularHypotenusetanθ=sinθcosθ=PrependicularBase
product to sum/diff Sum/diff to product
sin cos(A)cos(B)=12(cos(A+B)+cos(AB))
cos(A)sin(B)=12(sin(A+B)sin(AB))
sin(A)+sin(B)=2sin(A+B2)cos(AB2)
sin(A)sin(B)=2cos(A+B2)sin(AB2)
cos sin(A)sin(B)=12(cos(AB)cos(A+B))
sin(A)cos(B)=12(sin(A+B)+sin(AB))
cos(A)+cos(B)=2cos(A+B2)cos(AB2)
cos(A)cos(B)=2sin(A+B2)sin(AB2)
sin(θ)=sin(θ) cosec(θ)=cosec(θ)
cos(θ)=cos(θ) sec(θ)=sec(θ)
tan(θ)=tan(θ) cot(θ)=cot(θ)
function θ=0 θ=30 θ=45 θ=60 θ=90
sin 0 12 12 32 1
cos 1 32 12 12 0
tan 0 13 1 3 undefined

10: Trigonometric Identities

reference angle.png|center|600

11:

func period formula
sin(ax) period = 2πa
cos(ax) period = 2πa
tan(ax) period = πa

ANS: 2πb

4x+9=0;x=94

since sin has square, period becomes 2ππ and since θ=5x, period becomes ππ5

for:

a)0,πb)0,π,π3c)0,π,π6d)0,π8

12: Applications of trigonometry

triangle.png|center|400

Law of Sines Law of Cosines Law of tangents
asinα=bsinβ=csinγ cosα=b2+c2a22bc aba+b=tan(αβ2)tan(α+β2)
Sine Cosine Tangent
sinα2=(sb)(sc)bc cosα2=s(sa)bc tanα2=(sb)(sc)s(sa)
where
s=a+b+c2=perimeter2
Two sides and included angle one side and two angles three sides are given
Δ=12bcsinα Δ=a2sinβsinγ2sinα Δ=s(sa)(sb)(sc)
Circum Cricle In Circle Ex Circle
relation R=abc4Δ

R=a2sinα
r=Δs
!center !center

a)3, 4, 5b)5, 12, 13c)6, 7 ,16d)none

Type Angle Condition Description Side Relation
Acute All angles < 90° Every angle is sharp or narrow All sides follow a² + b²> c²
Obtuse One angle> 90° Contains one wide angle a² + b² < c²
Right One angle = 90° Contains one perfect right angle a² + b² = c² (Pythagorean)
Oblique No 90° angle (either acute or obtuse) A general term for non-right triangles Covers acute and obtuse
where c is the greatest side

13: Inverse Trigonometric Functions

sin1x+cos1x=π2;1x1cosec1x +sec1x=π2;x1 or x1tan1x+cot1x=π2;xR

since cosec1(12)=sin1(2) and sin never gives 2, and range of cosec is x1 or x1

since 32=1.5 and that is out of the rage of cos and sin

sin cos tan
sin=perp.hypo. cos=basehypo. tan=baseperp.
CNX_Calc_Figure_07_03_001.jpg Pasted image 20250605212455.png CNX_Calc_Figure_07_03_004.jpg
base= ax2 perp. = a+x2 hypo. = 1+x2

Part 2

1: Function & Limits +

domain and range

2: Differentiation and Derivatives

name
product rule ddx(f(x).g(x))=f(x).g(x)+f(x).g(x)
quotience rule ddx[f(x)g(x)]=g(x)f(x).f(x).g(x)(g(x))2
reciprocal rule ddx(1f(x))=f(x)[f(x)]2
power rule ddx(xn)=nxn1
simple inverse hyperbolic
Sin ddxsinx=cosx ddxsin1=11x2 ddxsinhx=coshx
Cos ddxcosx=sinx ddxcos1=11x2 ddxcoshx=sinhx
Tan ddxtanx=sec2x ddxtan1=11+x2 ddxtanhx=sech2x
Cot ddxcotx=cosec2x ddxcot1=11+x2 ddxcothx=cosech2x
Cosec ddxcosecx=cosec (x).cotx ddxcosec1=1x1x2 ddxcoshecx=coshec (x).cothx
Sec ddxsecx=secxtanx ddxsec1=1x1x2 ddxsechx=sechxtanhx

ANS = 0

ddxex=ex
ddxef(x)=ef(x)×f(x) ddxaf(x)=af(x)×lna×f(x)
ddx(logax)=1x×1lna

Rate of change of circumference of circle = dcdt=12π
Circumference = C=2πr
dCdt=2πdrdt;drdt=12π(dCdt)=12π×12π=6= rate of change of radius
Area of circle = A=πr2;dAdt=2πdrdt=2π(3)(6)=36π

3: Integration

if f(x) is odd: =0if f(x) is even: =0af(x) dx

simply put upper and lower limit: sin1((1)21+2(1))sin1((0)21+2(0))=sin1(13)

ln[f(x)]f(x) dx=f(x)×[ln(f(x))1]+c if:atf(x) dx=f(t)then0tx dx=[x22]0t=t22

(x×0)+C=C

ln(2x3+4x2+16x)

4: Analytical Geometry

general form of eq. of a line:ax+by+c=0slope=m=abx-intercept=cay-intercept=cb m1=m2;only parallelx or y intercepts are equal;also coinciding
thing formula explainations
distance d=|AB|=(x2x1)2+(y2y1)2 distance between two points
midpoint (x2+x12,y2+y12) the point in the middle of 2 points
division of line internally P=(k2x1+k1x2k1+k2,k2y1+k1y2k1+k2) P is the position vector where of the point dividing line internally.png
division of line externally P=(k2x1k1x2k1k2,k2y1k1y2k1k2) P is the position vector where of the point
distance between point and line d=|ax1+by1+c|a2+b2 where ax+by+c is the line
P(x1,y1) is the point
slope tanθ=m=(y2y1x2x1) the tangent of inclination(θ)
Centroid of triangle (x1+x2+x33,y1+y2+y33) centroid.png
in-center of a triangle (ax1+bx2+cx3a+b+c,ay1+by2+cy3a+b+c) from bisector of the angles in-circle.png
Standard: Ax+By=CGeneral: Ax+By+C=0Slope-Intercept: y=mx+cPoint-Slope: yy1=m(xx1)Two-Slope: yy1=y2y1x2x1(xx1)Two-Intercept: xa+yb=1

x_1 & y_1 & 1 \
x_2 & y_2 & 1 \
x_3 & y_3 & 1
\end{matrix} \right| = 0

ifslopeoftwolinesABandBCareequal,thenA,BandCarecolinearin$(x,y)$,xisthedistancefromyaxisandviceversa

\text{Area of triangle }= \Delta = \dfrac{1}{2}\begin{vmatrix}x_{1} & y_{1} & 1 \ x_{2} & y_{2} & 1 \ x_{3} & y_{3} & 1 \ \end

ifintheequationoftwolinescoefficientsof$x$,andcoefficientsofyareequalthentheyareparallela=aandb=bPositionofapoint$P(x1,y1)$relativetoaline$ax+by+c=0$

\begin{align}
ax_{1} + by_{1} + c> 0;& \quad \text{lies above line}\
ax_{1} + by_{1} + c < 0;& \quad \text{lies below line}\
ax_{1} + by_{1} + c = 0;& \quad \text{lies on the line}\
\end

similarlypositionofaline$ax+by+c=0$relativeto$x and y$axes

\begin{align}
a> 0 ; & \quad \text{ above x-axis } \quad | & \quad b> 0 ; \quad \text{ right y-axis } \
a < 0 ; & \quad \text{ below x-axis }\quad | & \quad b < 0 ; \quad \text{ left y-axis }\
a = 0 ; & \quad \text{ on x-axis } \quad \quad |& \quad b = 0 ; \quad \text{ on y-axis }\
\end{align}$$

|a1b1c1a2b2c2a3b3c3|=0 tanθ=m2m11+m1m2  real and distinct: h2>ab real and coincident: h2=ab imaginary: h2<ab tanθ=2h2aba+b

5: Linear Inequalities and Programming

6: Conic Section

conic section gif.gif|center|400

 Circle: x2+y2=1 Ellipse: x2a2+y2b2=1 Hyperbola: x2a2y2b2=1 Parabola: y2=4axMost General Equation: Ax2+By2+2hxy+2gx+2fy+c=0 e=1 parabola e=0 circle e>1 hyperbola 0<e<1 ellipse  A=B; same signcircleAB; same signellipseAB; opposite signhyperbolaA=0 or B=0parabola

if xy term is present use the following method:

h2=AB: Parabola h2>AB: Hyperbolah2<AB: Circle or Ellipse h=0;  A=B: Circle 

circle:

\
&\text{Standard Equation: \quad}r^2=(x-h)^2 + (y-k)^2
\end{align}$$
if in general equation A and B are equal to 1 then

center = (g,f) or (h,k)radius = r=g2+f2c

if values c(h,k) and r are given, use standard equation to form equation of circle.

r2=(x1h)2+(y1k)2>0;lies outside circler2=(x1h)2+(y1k)2<0;lies inside circler2=(x1h)2+(y1k)2=0;lies on circle

tangents

x2x.x12xx+x1y2y.y12yy+y1  Length of tangent =(x1h)2+(y1k)2r2=x12+y12+2gx1+2fy1+c

Parabola:

y2=4axy2=4ax are symmetric about x-axis x2=4ayx2=4ay are symmetric about y-axis 

table of parabola.jpg|center|800

Ellipse:

x2a2+y2b2=1

=x24+y216=1;a=4,b=2
the largest circle inside will have radius equal to semi minor axis = b, πr2=π(b)2=π22

Hyperbola:

(xh)2a2(yk)2b2=1

Center = (2,-1)
Vertices(∓(a+h), k) = (∓(3+2),-1)
Co Vertices(∓(b+h), k) = (∓(4+2),-1)
Foci (∓(c+h),k) = (∓(5+2),-1) ; c=a2+b2

4x2y2=0
4x2=y2;y=±2x

7: Vectors

OperationTrigonometric FormulaComponent FormulaPerpendicularParallelAngleDot ProductAB=|A||B|cosθAB=AxBx+AyBy+AzBz0 if θ=90Max. if θ=0cosθ=AB|A||B|Cross ProductA×B=|A||B|sinθn^A×B=|i^j^k^AxAyAzBxByBz|Max. if θ=00 if θ=180sinθ=AB|A||B|

3λ2λ2+2=86; now back solve and chose the one that satisfies the equation

a(b×c)=|axayazbxbybzcxcycz|
Volume of formula diagram
Parallelogram A×B !center
Tetrahedron 16[A.(B×C)] !center
Parallelepiped A.(B×C) !center

AB=i+j;AC=j+k;AD=i+k

16AB.(AC×AD)=16|110011101|=16×2=13